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STRONG CONSISTENCY OF M-ESTIMATES

FOR THE LINEAR MODEL

X. R. Chen and Yeuhua Wu

ABSTRACT

This article defines the M-estimate for the linear model directly

from the minimization problem

n
p (Yi - a'X i) = min.

i=l 11

Suppose that (Xi,Y 1), ... , (Xn,Yn), ... are i.i.d. observations of a

random vector (X,Y), where Y is one-dimensional and X may be multi-

dimensional. It is shown that the M-estimates n, an defined in thisn!

manner converge with probability one to a0, 60 respectively ((,0) is

the true parameter) as n - -, under very general conditions on the

function P and the distribution of (X,Y).
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1. INTRODUCTION

Let (XY ) ..., (Xn,Yn), ..o be i.i.d. observations of a random1 n n
vector (X,Y), where Y is one-dimensional and X may be multi-dimensional,

Suppose that the regression of Y to X, in some sense, is a linear function

+ 4x. It is desired to estimate the unknown parameters ct,0, , by
D

using the observations (X,Y), ..., (X ,Y ). A much discussed class of

estimates is the so-called M-estimate, which takes the solution of the

minimization problem

n
Z P(Yi -" O'X.) : min ()|+i=li

as the estimator. Here p is a properly selected function defined over

R,

In literature, the case is often considered in which the Xi's are

supposed to be known constant vectors rather than observations of some

random vector. But in many applications, especially in problems of econo-

metrics, it is more practical to assume the random character of the Xi's.

A common feature of most works dealing with this estimation problem,

for example [2], [3] and [6], is to assume that p has a continuous deriva-

tive , everywhere over R', thus converting the minimization problem (1)

to the problem of solving the system of equations

n n
_ w(Y -0- Xi) 0 0, y Xi (Yi - -'X i) 0 0. (2)i~l 1i iml1

In order to validate this procedure, one usually makes the assumption

that p is a convex function. These assumptions seem unduly restrictive

for, in some important cases such as p(t) = Itj (Minimum L1-Norm estimate),

o . . . . .
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p is not everywhere differentiable. Also, the convexity assumption ex-

cludes many functions with practical importance. For example,

p(t) = min{Itl,k} for some constant k > 0. In general, any function

bounded over R' is not allowed under this assumption.

So it makes much sense to tackle the estimation problem directly

starting from the minimization problem (1). Some works (for example,

[l], [4], [7]) have been done in this respect for the special case of

p(t) = ItI, but as far as the authors know, no work exists for general p

up to now.

The purpose of the present article is to study this problem in case

that the Xi's are observations of a random vector, To some extent our

method can also be employed to deal with the case in which the Xi's are

known nonrandom vectors, but some additional assumptions will be needed.

3
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2. FORMULATION OF THE RESULTS

In the sequel we shall stick to the notations introduced in Section

1. We shall denote by ( n, n) a Borel-measurable solution of the minimi-

zation problem (1).

We shall always impose the following conditions on the function

p and the random vector (X,Y):

a. P is continuous everywhere over R'.

b. p is nondecreasing over (0,-) and nonincreasing over (--,0).

From b it is seen that p(O) = min{p(t): t e R'}. Without losing

generality, we may assume that

c. p(O) = 0, p(t) > 0 on R'. (3)

d
d. Ep(Y-a- a'X) < - for any a e R', e Rd . (4)

de. For any x e R , the function

f x(e) B E{p(Y- e)IX = x} (5)

attains its minimum uniquely at

ex 0 + 60X (6)

with a0, aO not depending on x.

For convenience of reference, we shall call the set of conditions

{a, b, c, d, e} by "Condition (A)".

THEOREM 1. Suppose that the following are true:

1. Condition (A),

2. p(-) = p(--) =

V 3. If cii + IIII > 0, then P(a+a'X = 0) < 1 where >fl is the

Euclidean norm of a.

Then we have as n ,
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an -010 a.s. (7)

The following theorem deals with the case that p may be bounded.

THEOREM 2. Suppose that the following are true:

1. Condition (A).

2. p(-) =p

3. If jai + IIBiI > 0, then P(c,+6'X = )= 0.

Then (7) holds true.

Finally, we have the following theorem concerning the convergence

rate of an and an 'qn

THEOREM 3. Suppose that

1. The conditions of Theorem 1 or Theorem 2 are true.

2. For any a e R' and a e Rd, the moment generating function of

p(Y -a- B'X) is finite in some neighborhood of zero (the neighborhood

may depend on a, a).

Then for arbitrarily given e > 0, there exists constant c > 0 inde-

pendent of n such that

P(Jn - O  > e) = O(e-cn), P(II n-80II > E) O(ecn) (8)

Before entering the details of the proof, we make some remarks

about the conditions of the theorems.

1. Condition b seems quite natural from the practical point of view,

As for the continuity assumption a, it also seems reasonable. This con-

dition can be weakened to some extent at the expense of a much stronger

condition on the distribution of (X,Y).

malilU M
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2. Condition 3 of Theorem 1, in fact, is a consequence of e. Condi-

tion 3 of Theorem 2 holds when X possesses a density.

3. Condition e is closely related to the meaning of the regression.

More clearly speaking, the exact meaning of the regression determines the

class of functions p which can be used in formulating the minimization

problem (1). For instance, when a + ax is the conditional median of Y

given X = x (median regression). We can choose p(t) = Iti, or any p for

which E{p(Y-e)IX = x1 attains its minimum uniquely at the conditional

median. Likewisely, when a0 + Box is the conditional expectation of Y

2
given X = x, we can choose p(t) = t . An important case is that the

conditional distribution of Y given X = x is symmetric and unimodal with

center aO + 6 x. In this case, p can be chosen as any even function

satisfying conditions a, b, d, and that p(t) > p(O) when t O 0.

Ji'

.p
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3. PROOF OF THE THEOREMS

We give the detailed proof of Theorem 1. An easy modification of

the argument enables us to prove the remaining two theorems.

The main body of the proof of Theorem 1 is contained in the follow-

ing two lemmas.

LEMMA 1. Suppose that the conditions of Theorem 1 are satisfied,

14 is a bounded closed set in Rd+l, and (OO) e. Let ,n) be a

Borel measurable solution of the restricted minimization problem

n
P(Yi-a- 'Xi ) = min (9)

i=l

with (ct,') being restricted ind3. Then as n - , we have

an - a0  n -* aos. (10)

Denote by SR tne closed ball {(a,'): 2 + 2 R2} inR

S,Bn) is the solution of the unrestricted minimization problem (1) as

as mentioned earlier.

LEMMA 2. Suppose that the conditions of Theorem I are satisfied,

then there exists constant R such that with probability one we have

(anX) eT for n sufficiently large.n Sn R

It is readily seen that Theorem 1 follows from these two lemmas.

Indeed, take H = SR' where R is the constant mentioned in Lemma 2.

Lemma 2 indicates that

P((nn) = ,n) for n sufficiently large 1,

which in turn entails

4
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P(lim(cn- ;n) =0, i(An ;n = o)

From this and Lemmna 1, (7) follows,

Proof' of Lermma 1. Without loss of generality, we may assume

a = 0, f 0

For any constant z. > 0, define

d+ 1
Ajz=

4Take z. large enough such that J~CA.. Denote the T = 2 d+l points

(±z,±i, ~ ~ ~ ~ (d .~±) b a~~~~(.b..). According to conditions b, c,

it can easily be shown that

T
0 < p)(Y C-&x) < I Q)(y-a b -x) (11)

d+J 1

for any (x',y) e R dland (a,&') e AV.  Define

Q (a~, ) Ep (Y -a- 'x) . (12)

By (11) and conditions a, d, it follows from the Lebesgue convergence

theorem that Q is continuous. By condition e it follows that

Q(ca,a) > Q(0,0), when JulI + 11Ill > 0. (12)

Hence for arbitrarily given E: > 0, we have

q =- inf{Q(ct,B): (a~,6') e'IR- A E} - Q(0,0) > 0. (14)

For any constant M > 0, denote by I M I M(X,Y) the indicator of the set

AcM Choose e e (0, q/4) and M > 0 large enough such that

P{(X',Y) e A M} > 1 - El, (15)

E[IMP(Y -a-'x)] < el for any (a6' e(F". (16)
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The existence of such a constant M follows from condition d and (11),

Write those elements in {(Xl,Y 1), ..., (Xn 'Yr )} which fall into the

set AM, in the order of appearance, as
(XIYI), ..., (Xn,,Yn,)

Evidently, these variables are conditionally i.i.d. given n', with the

common distribution (X,Y)I((X',Y) e AM) o Define the event

Bn = {n' > (1 - 2cl)n}.

Then by (15) and the strong law of large numbers, it follows that with

probability one Bn occurs for n sufficiently large. Put

QM(,s) E[(l - IM)P(Y -a X)].

Then QM is continuous in a, o Find e; > 0 sufficiently small, such that

IQM (a,;) - QM(,o)I < El
when

(0, e eKB), (a ') eB, ic1-I < E:, -el < CI

Put

1H sup{y -a- b'xI: (x',y) e AM, (a,b') eS}. (17)

Find c2 > 0 sufficiently small such that

sup{lp(r 2 ) -p(rI)I: Irl < ' Ir2 1 < 1r2 - rl < 2} < el, (18)

Find £3 6 (0'E3) such that

j(a+b'x) - (a+b'x)I <£ 2 (19)

when
(a,b') e) ea,b') e , a- al < I3 lb - bHl I.xII _ Md,

Choose a finite setfl = {(ai,Bi): i l,...,mc R- A, such that

for any (a,B') e11,- A there exists () el" satisfying
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By the strong law of large numbers, with probability one we have

1g ni p~cca- X*) > E[p(Y- - X)1 I E

>Ep(Y - aj - 'X) -c

>Q(0,0) + q - 2cl, j = J-S (20)

for n sufficiently large. Hence with probability one

n P(Y cz.-x. .1 - (Y X
1= i n~ j 1 n

SQ(0,0) + n', i = 1,...,m (21)

for n sufficiently large, where

T'= (q -2E1) (- 1 - 2E, 2cQ(0,0) .

Now choose arbitrarily A~~' e ~-A Find (czYj , e 'f1 such that

Icj -.A a e3, e1%- BI E3 ' kcording to (18) , (19), (21), we have

n -n -

i (Yl 1 ccl 1 1)> PY -O

> *(Y - C, 6'

Il 1 3 31) 1 ( ,-6

> n[Q(0,0) +n'] Wens > n[Q(0,0) + n]j, (22)

with probability one for n sufficiently large, where n = 1'
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Choose I > 0 sufficiently small such that n > 0. (22) should be under-

stood that it is true simultaneously for all ( e,') T13- A when (21) is

true. Therefore, with probability one we have

n

min{-I J P(Yi-QaB'X'): (a,V') e - A } > Q(0,0) + n (23)
A:i~l * 1

A for n sufficiently large.

On the other hand, by the strong law of large numbers, with proba-

bility one we have

n p(yi < Q(OO) + n (24)

for n sufficiently large. From (23), (24), it follows that

P(jnI < E IIn < E, for n sufficiently large) = 1.

This concludes the proof of Lemma 1.

Proof of Lerna 2. Write S1 = {(2,') I ! + 11BII 2 = 11. According

to condition 3 of Theorem 1, one can find E > 0 such that

q - inf{P(l + 'XI > e): (a,P') e S} > 0. (25)

Eind M sufficiently large, such that P(X e A V) > 1 - q/4. Put

n = (3(l +dM) -1 . Choose a finite set S1 c S1 in such a way so that

for any 6 e SI there exists ; G SI satisfying Ile-61! < n. By (25) and

the strong law of large numbers, with probability one we have

#{i: 1 <i <n, I a+'XiI > E for any (a, B) e S > nq/2 (26)

for n sufficiently large, where #(A) denotes the number of elements

of set A.
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By the strong law of large numbers, with probability one we have

#(i: 1 < i < n, X e A M} > n(l - q/4). (27)

Choose a constant K such that

qKI8 > Q(0,0) + 1

where the function Q is defined by (12). According to condition 2 of

Theorem 1, one can find h so that P(a) > K when lal >h. Choose a

constant R large enough so that

eR/4 > h,

PcY R14) > I - q/8.

By the strong law of large numbers, with probability one we have

#(i: 1 < i < n, lY.I < 0R/41 > n(l -q/8). (28)

Now choose arbitrarily a point (c,V) outside SR We have

(UqV~) = r(a,P) : r > R, ( ')e S 1.

Assume that (26)-(28) are true, then

* 1. if (iS)e §1, from (26) we have

#{i : 1 < i < n, Il+ VXiI > Rc} > nqI2. (29)

From (28), (29), we obtain

#{i: 1 < i < n, IYi- c- BX.i > 3REI4} > 3nq/8. (30)

2. If 4Sthen choose (,3*)e S1 satisfying

when lVi*+6*'X~i > E and Xie Am, we have

- IC*x

> - n- rndM > e12.
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Hence 1a+B'Xil > Rc/2. From this, and (26)-(28), we get

f{i: 1 <_ i <n, Yi-a- 'Xil > Rc/4} > nq/8 (31)

Summarizing these two cases, we see that with probability one,

n (Yi -a- 6'Xi ) > qK/8 > Q(O,O) + 1

i=l

holds simultaneously for all (a,E') outside SR' when n is large enough.

Since (24) is true for n= 1, we see that with probability one

nn
m , T ;R i  1 7 0(y) (32)

Iw 1 S nR n em(

for n sufficiently large. Therefore

j{( ,) e S.- for n sufficiently largel = 1 (33)
nn R

which proves Lemma 2.

rProc' o:' Tzeopen 2- Without loss of generality, assume U0 0,

0 = 0. No change is needed in the proof of Lemma 1. For a proof of

Lemma 2 under the conditions of Theorem 2, first note that Q(O,0) < L(-)

by conditions a, b, e and condition 2 of Theorem 2. From condition 3 of

Theorem 3, it is readily seen that for any a < I there exists E > 0 such

that

inf{P(Ic + 'XI > c): ( 6,t') e SI I a,

Starting from these two facts and employing the argument used earlier,

it can be shown that there exists constant R such that

n
p ! 7 P(Yi'c'- Xi) > c for (c,') 'S
P~il 11

simultaneously, when n larqe enoughi = 1 (34)

OO=
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where Q(O,O) < c < L(-). From (34) we obtain (32), hence (33),

Proof of Theorem 3,, The proof follows from the following two lemmas:

LEMMA I. Under the conditions of Theorem 3 for arbitrarily given

> 0, there exists constant c > 0 such that

P(J n - O a > d) = O(e cn)

P(n6In-6 0 1 > E) 
= O(e-cn)

where , n are the same as in Lemma 1.

LEMMA 2' Under the conditions of Theorem 3, there exist constants

R > 0 and c > 0 such that

P( n n'O' n" BO) SR} (e-

These lemmas can be proved by employing the argument used in proving

Lemma 1 and Lemma 2, with the help of the following fact (see [5], p,288):

S Suppose that I' 2' "' is a sequence of i.i.d. random variables, Er1 = 0

and E exp(t& I) < - for !tj < i, . > 0, then for arbitrarily given E > 0

there exists constant c > 0 such that

n
P(I i/n! > E) = O(e'Cn)

i=l 1
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